Новые катализаторы помогут солнечной энергетике

Нoвыe кaтaлизaтoры пoмoгут сoлнeчнoй энeргeтикe
Группa xимикoв рaзрaбoтaлa нoвыe кaтaлизaтoры, ускoряющиe синтeз мoнoсилaнa – исxoднoгo сырья для пoлучeния пoликрeмния, кoтoрый испoльзуeтся в микрo- и нaнoэлeктрoникe, a тaкжe сoлнeчнoй энeргeтикe. Кaтaлизaтoры oкaзaлись дешевле, экологичнее и эффективнее существующих аналогов. Исследование поддержано грантом Российского научного фонда (РНФ). Сообщение о своем исследовании ученые опубликовали в журнале Applied Catalysis B: Environmental. При массовом производстве его стоимость составляет примерно 20 долларов за килограмм, однако, спрос на него в последние годы стремительно растет, в основном за счет развития солнечной энергетики. Соответственно, возрастает потребность в более дешевых и безопасных технологиях его производства. Около 90% производства поликремния приходится на так называемый «Сименс-процесс» – цепочку химических операций, в ходе которых из технического кремния синтезируют вещество трихлорсилан, а из него водородным восстановлением получают поликремний. К сожалению, у этого способа есть недостатки: на тонну поликремния производитель получает 18 тонн высокотоксичного тетрахлорида кремния, а сам процесс требует высоких температур, порядка 1200 °С, что повышает стоимость производства. Все большую популярность приобретает «Юнион карбайд процесс». Здесь тоже участвует трихлорсилан, но из него производится соединение кремния с водородом (моносилан), из которого термическим разложением получают требуемый поликремний. Несмотря на усложнение процесса, он оказывается намного привлекательнее из-за низкого потребления энергии, поскольку не требует высокой температуры – всего 80 °С. Реакция, в ходе которой получают моносилан, тоже не идеальна: на 1 тонну поликремния образуется 16 тонн токсичного побочного продукта, а катализаторы загрязняют поликремний электроактивными примесями. К тому же моносилан производится в такой реакции в малом количестве: практический выход не превышает 1,2%. Многие лаборатории мира пытаются усовершенствовать процесс получения поликремния, но основные исследования сводятся к модернизации аппаратного исполнения и изменению технологических параметров, таких как температура и давление. Поэтому авторы нового исследования задались целью найти более производительные катализаторы и детально изучить и моделировать реакции. Химики исследовали помещенные для неподвижности в различные пористые носители ионные жидкости – расплавленные соли, состоящие из одних ионов. Такие катализаторы отличает то, что их структурой и функциональными свойствами, такими как размеры полимерных частиц катализатора и их каталитическая активность, легко управлять, внося в их состав различные добавки. «На конечной стадии мы можем добавлять в катализатор так называемый органический активный центр, который и катализирует саму реакцию. Создание таких веществ – это творческий процесс, в нем ученый-химик выступает в качестве дизайнера, который на основе проведенных научных исследований «пришивает» к своему катализатору то, что он считает нужным для получения определенных свойств. Наши исследования показали, что лучше всего в этой реакции повышает каталитическую активность добавление в этот центр атомов азота», – рассказал Андрей Воротынцев, руководитель исследования, старший научный сотрудник Лаборатории мембранных и каталитических процессов Нижегородского технического университета имени Р.Е. Алексеева. Существенно, что новый катализатор не подвержен отравлению каталитическими ядами и позволяет создавать замкнутые технологические циклы за счет его легкой регенерации, и, соответственно, его можно пускать в ход снова и снова. Кроме того, применение катализаторов типа SILLPs (Supported Ionic Liquid-Like Phases) помогло уменьшить состав примесей в моносилане, а низкая температура, при которой протекает реакция (менее 200 °С), существенно удешевила процесс синтеза моносилана. Иначе говоря, новый катализатор позволил получать дешевый и высокочистый поликристаллический кремний, синтез которого может протекать в условиях промышленной и технологической безопасности. Исследование проводилось совместно с учеными из Института проблем машиностроения РАН и Нижегородского государственного университета имени Н.И. Лобачевского. Источник: ПОЛИТ.РУ

Link to original

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

RSS Главные новости

Рейтинг@Mail.ru